Quantcast
Channel: RAM | STAAD | ADINA Wiki
Viewing all articles
Browse latest Browse all 8748

RAM SS Common Framing Table Errors [TN]

$
0
0
Current Revision posted to Structural Analysis and Design - Wiki by Seth Guthrie on 8/21/2014 4:29:58 PM

  
 Applies To 
  
 Product(s):RAM Structural System
 Version(s):13.00.00.00 or later
 Environment: N/A
 Area: N/A
 Subarea: N/A
 Original Author:Bentley Technical Support Group
  

 

 

 

 

 

 

 

 

Framing Tables Errors


General

There are many instances where modeling errors in Ram Structural System are not caught by a Data Check in Ram Modeler. Data Check looks at general geometric information, but it does not attempt to validate all of the information needed to compile the Ram Gravity Framing Tables.

Many of these errors are slab edge or slab opening related.  When one way decking is modeled, slab edges and slab openings must be associated with adjacent beams/walls.  For this reason, avoid using free formed slab edges/openings with one way decking.  Instead, use Layout - Slab - Slab Edge - Whole Perimeter and Layout - Slab - Slab Opening - In Bay to model the slab edges and slab openings.  Then, revise the slab edges/openings where the offset changes.  To further ensure accuracy, only use beams and walls in your Options - Set Snap Points.  Finally, use a positive, non-zero, slab edge offset.  Zero inch slab edge offsets are permitted, but the program algorithms were originally developed assuming non-zero offsets and some configurations can be problematic.

Below are several common modeling configurations that cause problems for the program but are not caught by Data Check.  The right hand image shows the typical error message produced while building the framing tables.  In the background, the framing tables usually halt at a particular member on a particular floor as shown in the left hand image.  Typically, but not always, the modeling issue occurs in the vicinity of the member where the framing tables halt. 


Illegal Framing Configuration

  

Most illegal configuration errors are slab edge or slab opening related.  Subtle inaccuracies in member end locations can cause small slab edge segments that are problematic for the framing tables.  Review the member end coordinates using the Layout - Beam - Show command and the slab edge coordinates using Layout - Slab Edge - Show.  Try remodeling the slab edge using the whole perimeter command. 


Missing Slab Edge

  

Many missing slab edge errors are related to having portions of the structure isolated from the perimeter beam loop under one way decking as shown below.  To resolve the issue, model two beams that connect the isolated structure back to the adjacent framing.  If these beams are modeled parallel to the deck span, they will take no tributary load from decking.

 


Internal Error in AdvanceNodeList()

  

Typically, these errors are similar to the missing slab edge error.  The main difference is that there usually is only a single beam/wall connecting the interior structure to the perimeter beam loop as shown below.  Modeling a second beam will resolve the issue.


Beam Loop Intersection not Found

  

Typically, beam loop intersection errors are related to line loads that are slightly askew from a beam.  Often discrepancies arise when a single line load is added over multiple beams that are not truly collinear.  Review the coordinates of the beam and line load using the Layout - Beam - Show and Layout - Load - Line Load - Show command.  To resolve the issue, delete the line load(s) and remodel them using the Add On Beam command.

This error can also be associated with changes in one way deck orientation or properties.  One way decking should always transition along a beam/wall.  That includes transitions from one way decking to two way decking. 

Furthermore, one way deck angles are normally limited to angles between 0 and 179.99 degrees. If imported models have deck angles larger than 180 degrees, this can also cause a beam loop error.


Failed to Find Slab Edge Loads

  

These errors are usually related to tolerance problems between the slab edge loop and perimeter beam loop.  Review the slab edge and beam coordinates using the Layout - Slab - Slab Edge - Show and Layout - Beam - Show command.  Try remodeling the slab edge using the whole perimeter command.

Failed to Create Slab Edge Load Polygons

This error tends to happen when there is a small level with an incomplete perimeter of framing similar to the one pictured below. Adding the short beam on Gird B between the two concrete columns completes the loop with beams 40, 39 and 41. Adding the other beams would only be required if the deck was intended to load beam 42.

Crash with no warning or error message

If a model crashes with no warning or error message then it is harder to diagnose the problem (especially if the Integrity - Data Check offers no clues)

One specific situation that can cause a crash is when a braced frame on an upper level is supported on a two-way deck with no supporting transfer beam. Where it's impractical to add a supporting beam, a work-around for this situation is to model the braces using the Add Standard - Knee brace approach using a vertical offset just a little less than the story height. When the braces intercept the column above the two-way transfer level the framing tables work properly without crashing the analysis and this should have minimal effect on the stiffness matrix.

Missing or Incorrect Loads on Perimeter beams

Since the advent of free form slab edges, there have been a few framing slab edge configurations that can lead to unexpected loading on the perimeter beams.

In the image below, the slab edge is slightly skewed to the perimeter beam, and crosses it at one point. Consequently beam 8 may be assumed outside of the slab edge and will not receive loads from the one-way deck.

The best way to avoid the problem when using one way decks is to align the slab edge with the perimeter beams and use at least a 1" outboard overhang. Furthermore, make sure the perimeter framing creates a closed loop around the diaphragm. Small gaps in the perimeter framing can also cause problems.

 

Forcing a "Reframe"

In some cases the beam design module can open and not require a rebuilding of the framing tables, what is commonly referred to as a reframe. A reframe is generally triggered by making any kind of change on a particular level. You can also force a reframe by changing any of the Ram Manager criteria like Self Weight or Live Load Reduction code.

If the design module produces an unexpected error, one simple thing to try is forcing a reframe. You can change one the criteria mentioned above, and click OK. You should get a window like this if previous results are going to be discarded:

Then change the criteria back the way it should be and try the beam design again.

 

See Also

Product TechNotes and FAQs

Structural Product TechNotes And FAQs

External Links

Bentley Technical Support KnowledgeBase

Bentley LEARN Server

Comments or Corrections?

Bentley's Technical Support Group requests that you please confine any comments you have on this Wiki entry to this "Comments or Corrections?" section. THANK YOU!

Tags: SELECTservices, Illegal Framing Configuration, RAM Structural System, Internal Error in AdvanceNodeList(), TechNote, Framing Tables, Missing Slab Edge, Beam Loop Intersection, Failed to Find Slab Edge Loads

Viewing all articles
Browse latest Browse all 8748

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>