Applies To | |||
Product(s): | STAAD(X) | ||
Version(s): | All | ||
Environment: | N/A | ||
Area: | Wiki | ||
Subarea: | HSS Round section design as per NBR 8800 | ||
Original Author: | Anisurya Ghosh, BSW-Quality Assurance, Bentley Kolkata | ||
- Introduction:
The following is a validation problem for a detailed calculation of the NBR 8800 HSS Round section design.
The NBR 8800 implementation was an integral part of STAAD(X) SS3 release.
- Validation Problem:
A 6 m high cantilever column formed from a 12.75 in diameter circular hollow section (HSS12.750X0.500, A500 Gr. B steel), is checked for an applied a concentrated axial compression load of 2340 KN (FY) at the top (free end).
Sample Model:NBR-8800_Pipe.STDX
Section Properties [HSS Round]:
HSS12.750X0.500
OD = 323.85 mm, TDES = 11.81 mm, AX = 11548.4 mm2, Ixx = Iyy = 141100950 mm4,
J = 282201910 mm4,
rx = ry = 110.5 mm, Zex = Zey = 1150371.89 mm3, Sx = Sy = 871406.22 mm3
Material Properties:
A500 Gr. B
E = 199948 MPa, G = 76903.1 MPa, fy = 300 MPa, fu = 400 MPa, µ = 0.3
- Manual Calculation:
Section Classification:
1. Axial Compression
a. Flange Classification:
D/t = 323.85/11.81 = 27.42, 1.4* = 36.14
So, D/t < 1.4* . Hence, section is Non-slender.
b. Web Classification:
D/t = 323.85/11.81 = 27.42, 1.4* = 36.14
So, D/t < 1.4* . Hence, section is Non-slender.
2. Flexure
a. Flange Classification:
λ = D/t = 27.42
From Annex G.2.7, λp = 0.07E/fy = 46.655
λr = 0.31E/fy = 206.613
λ < λp, hence section is compact.
b. Web Classification:
λ = D/t = 27.42
From Annex G.2.7, λp = 0.07E/fy = 46.655
λr = 0.31E/fy = 206.613
λ < λp, hence section is compact.
Axial Tension:
For normal load combination, γa1 = 1.1 and γa2 = 1.35 [Table 3, NBR-8800]
Tensile Yielding:
NtRdy = Ag*fy/γa1 = 11548.4*300/ (1.1*1000) KN = 3149.56 KN
Tensile Rupture:
NtRdr = Ae*fe/γa2 = 11548.4*400/ (1.35*1000) KN = 3421.748 KN
Axial Compression:
According to clause E.1.1:
Flexural Buckling about major axis:
Effective Length Factor Kx = 1.0
Elastic flexural buckling force Nex = π2*E*Ix/(Kx*Lx2) = 3.1416^2*199948*141100950/(1.0*6000^2*1000)
= 7734.75 KN
0.11*E/fy = 73.314
So, D/t < 0.11*E/fy. Hence, from clause F.4, Net stress reduction factor Q = 1.0
For λ0 <= 1.5, Reduction factor associated with resistance to compression χ = 0.658 λ0^2 = 0.829 (Clause 5.3.3.1)
Now, Axial Compression Capacity Nc,Rd = χ*Q*Ag*fy/ γa1 = 0.829*1.0*11548.4*300/(1.1*1000) = 2610.99 KN
Ratio = 2340/2610.99 = 0.896
Flexural Buckling about minor axis:
Effective Length Factor Ky = 1.0
Elastic flexural buckling force Ney = π2*E*Iy/(Ky*Ly2) = 3.1416^2*199948*141100950/(1.0*6000^2*1000)
= 7734.75 KN
0.11*E/fy = 73.314
So, D/t < 0.11*E/fy. Hence, from clause F.4, Net stress reduction factor Q = 1.0
For λ0 <= 1.5, Reduction factor associated with resistance to compression χ = 0.658 λ0^2 = 0.829 (Clause 5.3.3.1)
Now, Axial Compression Capacity Nc,Rd = χ*Q*Ag*fy/ γa1 = 0.829*1.0*11548.4*300/(1.1*1000) = 2610.99 KN
Ratio = 2340/2610.99 = 0.896
Flexure:
Bending about Major Axis:
Yielding:
Yielding Capacity MRd = 1.5*W*fy/ γa1 = 1.5*871406.22*300/(1.1*1000000) KN-m = 356.484 KN-m
Ratio = 0
Local Buckling:
Plastic Bending Moment Mpl = Zx*fy = 1150371.89*300/1000000 KN-m = 345.112 KN-m
λ < λp, hence from clause G.2.7, Nominal flexural strength MRd, LB = Mpl/ γa1 = 313.738 KN-m
Bending about Minor Axis:
Yielding:
Yielding Capacity MRd = 1.5*W*fy/ γa1 = 1.5*871406.22*300/(1.1*1000000) KN-m = 356.484 KN-m
Ratio = 0
Local Buckling:
Plastic Bending Moment Mpl = Zx*fy = 1150371.89*300/1000000 KN-m = 345.112 KN-m
λ < λp, hence from clause G.2.7, Nominal flexural strength MRd, LB = Mpl/ γa1 = 313.738 KN-m
Shear:
Torsion:
Torsion Shear Modulus Wt = π*(D-t) 2*t/2 = 3.1416*(323.85-11.81)2*11.81/2 = 1806306.01 mm3
We will take minimum of these two.
0.60*Wt*fy/γa1 = 295.58 KN-m
TRd 1 = [1.23*1806306.01*199948]/[1.1*62.7505*4.30431*106] = 1495.202 KN-m > 295.58 KN-m
TRd 2 = [0.6*1806306.01*199948]/[1.1*143.5956*106] = 1371.911 KN-m > 295.58 KN-m
So, TRd = 295.58 KN-m
- Summary Table:
Item | STAAD(X) Value | Hand calculated value | % Deviation |
Critical clause | 5.3.2 | 5.3.2 | - |
Critical ratio | 0.8962 | 0.896 | 0.0223 |
Section classification | |||
λ (Compression)_Flange | 27.419 | 27.42 | 0.0036 |
λp (Compression)_Flange | 73.314 | 73.314 | 0.0000 |
λ (Compression)_Web | 27.419 | 27.42 | 0.0036 |
λr (Compression)_Web | 73.314 | 73.314 | 0.0000 |
λ (Flexure)_Flange | 27.419 | 27.42 | 0.0036 |
λp (Flexure)_Flange | 46.655 | 46.655 | 0.0000 |
λr (Flexure)_Flange | 206.613 | 206.613 | 0.0000 |
λ (Flexure)_Web | 27.419 | 27.42 | 0.0036 |
λp (Flexure)_Web | 46.655 | 46.655 | 0.0000 |
λr (Flexure)_Web | 206.613 | 206.613 | 0.0000 |
Tension check | |||
Yielding Tensile Pc [KN] | 3149.554 | 3149.56 | 0.0002 |
Rupture Tensile Pc [KN] | 3421.737 | 3421.748 | 0.0003 |
Compression check | |||
Compressive Pc (Major) [KN] | 2611.135 | 2610.99 | 0.0056 |
Ae (Major) [mm2] | 11548.364 | 11548.4 | 0.0003 |
Q | 1 | 1 | 0.0000 |
Reduced Slenderness Ratio (λ0) | 0.669 | 0.669 | 0.0000 |
Compressive Pc (Minor) [KN] | 2611.135 | 2610.99 | 0.0056 |
Ae (Minor) [mm2] | 11548.364 | 11548.4 | 0.0003 |
Reduced Slenderness Ratio (λ0) | 0.669 | 0.669 | 0.0000 |
Flexure check | |||
Bending Capacity (Major) [KN-m] | 356.484 | 356.484 | 0.0000 |
Actual MZ [KN-m] | 0 | 0 | 0.0000 |
Bending Capacity (Minor) [KN-m] | 356.84 | 356.484 | 0.0998 |
Actual MY [KN-m] | 0 | 0 | 0.0000 |
Shear check | |||
Shear Capacity (Major) [KN] | 944.866 | 944.869 | 0.0003 |
Aw (Major) [mm2] | 5774.182 | 5774.182 | 0.0000 |
Shear Capacity (Minor) [KN] | 944.866 | 944.869 | 0.0003 |
Aw (Minor) [mm2] | 5774.182 | 5774.182 | 0.0000 |
Major Local Buckling Capacity [KN-m] | 313.738 | 313.738 | 0.0000 |
Minor Local Buckling Capacity [KN-m] | 313.738 | 313.738 | 0.0000 |
Torsion check | |||
Torsion Modulus Wt (mm3) | 1806443.162 | 1806306.01 | 0.0076 |
Torsion Capacity (KN-m) | 295.6 | 295.58 | 0.0068 |
Interaction check | |||
Nsd (comp) (KN) | 2340 | 2340 | 0.0000 |
Nc,Rd (KN) | 2611.135 | 2610.99 | 0.0056 |
Mx,Sd (KN-m) | 0 | 0 | 0.0000 |
Mx,Rd (KN-m) | 356.484 | 356.484 | 0.0000 |
My,Sd (KN-m) | 0 | 0 | 0.0000 |
My,Rd (KN-m) | 356.484 | 356.484 | 0.0000 |
Nsd (tens) (KN) | 0 | 0 | 0.0000 |
NRd (KN) | 3149.554 | 3149.56 | 0.0002 |