Quantcast
Channel: RAM | STAAD | ADINA Wiki
Viewing all articles
Browse latest Browse all 8748

HSS Round section design as per NBR 8800

$
0
0
Current Revision posted to Structural Analysis and Design - Wiki by Seth Guthrie on 6/23/2014 10:24:32 PM

  
 Applies To 
  
 Product(s):STAAD(X)
 Version(s):All
 Environment: N/A
 Area: Wiki
 Subarea: HSS Round section design as per NBR 8800
 Original Author:Anisurya Ghosh, BSW-Quality Assurance, Bentley Kolkata
  

 

 

 

 

 

 

 

 

  • Introduction:

The following is a validation problem for a detailed calculation of the NBR 8800 HSS Round section design.

The NBR 8800 implementation was an integral part of STAAD(X) SS3 release.

 

  • Validation Problem:

A 6 m high cantilever column formed from a 12.75 in diameter circular hollow section (HSS12.750X0.500, A500 Gr. B steel), is checked for an applied a concentrated axial compression load of 2340 KN (FY) at the top (free end).

 Sample Model:NBR-8800_Pipe.STDX

 

Section Properties [HSS Round]:

HSS12.750X0.500

OD = 323.85 mm, TDES = 11.81 mm, AX = 11548.4 mm2, Ixx = Iyy = 141100950 mm4,

J = 282201910 mm4,

rx = ry = 110.5 mm, Zex = Zey = 1150371.89 mm3, Sx = Sy = 871406.22 mm3

 

Material Properties:

A500 Gr. B

E = 199948 MPa, G = 76903.1 MPa, fy = 300 MPa, fu = 400 MPa, µ = 0.3

 

 

  • Manual Calculation:

 

Section Classification:

1. Axial Compression

a. Flange Classification:

D/t = 323.85/11.81 = 27.42, 1.4*  = 36.14

So, D/t < 1.4* . Hence, section is Non-slender.

b. Web Classification:

D/t = 323.85/11.81 = 27.42, 1.4*  = 36.14

So, D/t < 1.4* . Hence, section is Non-slender.

2. Flexure

a. Flange Classification:

λ = D/t = 27.42

From Annex G.2.7, λp = 0.07E/fy = 46.655

λr = 0.31E/fy = 206.613

λ < λp, hence section is compact.

b. Web Classification:

λ = D/t = 27.42

From Annex G.2.7, λp = 0.07E/fy = 46.655

λr = 0.31E/fy = 206.613

λ < λp, hence section is compact.

 

 

Axial Tension:

For normal load combination, γa1 = 1.1 and γa2 = 1.35 [Table 3, NBR-8800]

Tensile Yielding:

NtRdy = Ag*fy/γa1 = 11548.4*300/ (1.1*1000) KN = 3149.56 KN

 

Tensile Rupture:

NtRdr = Ae*fe/γa2 = 11548.4*400/ (1.35*1000) KN = 3421.748 KN

 

 

Axial Compression:

According to clause E.1.1:

Flexural Buckling about major axis:

Effective Length Factor Kx = 1.0

Elastic flexural buckling force Nex = π2*E*Ix/(Kx*Lx2) = 3.1416^2*199948*141100950/(1.0*6000^2*1000)

= 7734.75 KN

0.11*E/fy = 73.314

So, D/t < 0.11*E/fy. Hence, from clause F.4, Net stress reduction factor Q = 1.0

For λ0 <= 1.5, Reduction factor associated with resistance to compression χ = 0.658 λ0^2 = 0.829 (Clause 5.3.3.1)

Now, Axial Compression Capacity Nc,Rd = χ*Q*Ag*fy/ γa1 = 0.829*1.0*11548.4*300/(1.1*1000) = 2610.99 KN

Ratio = 2340/2610.99 = 0.896

 

Flexural Buckling about minor axis:

Effective Length Factor Ky = 1.0

Elastic flexural buckling force Ney = π2*E*Iy/(Ky*Ly2) = 3.1416^2*199948*141100950/(1.0*6000^2*1000)

= 7734.75 KN

0.11*E/fy = 73.314

So, D/t < 0.11*E/fy. Hence, from clause F.4, Net stress reduction factor Q = 1.0

For λ0 <= 1.5, Reduction factor associated with resistance to compression χ = 0.658 λ0^2 = 0.829 (Clause 5.3.3.1)

Now, Axial Compression Capacity Nc,Rd = χ*Q*Ag*fy/ γa1 = 0.829*1.0*11548.4*300/(1.1*1000) = 2610.99 KN

Ratio = 2340/2610.99 = 0.896

 

Flexure:

Bending about Major Axis:

Yielding:

Yielding Capacity MRd = 1.5*W*fy/ γa1 = 1.5*871406.22*300/(1.1*1000000) KN-m = 356.484 KN-m

Ratio = 0

Local Buckling:

Plastic Bending Moment Mpl = Zx*fy = 1150371.89*300/1000000 KN-m = 345.112 KN-m

λ < λp, hence from clause G.2.7, Nominal flexural strength MRd, LB = Mpl/ γa1 = 313.738 KN-m

Bending about Minor Axis:

Yielding:

Yielding Capacity MRd = 1.5*W*fy/ γa1 = 1.5*871406.22*300/(1.1*1000000) KN-m = 356.484 KN-m

Ratio = 0

Local Buckling:

Plastic Bending Moment Mpl = Zx*fy = 1150371.89*300/1000000 KN-m = 345.112 KN-m

λ < λp, hence from clause G.2.7, Nominal flexural strength MRd, LB = Mpl/ γa1 = 313.738 KN-m

Shear:


Torsion:

Torsion Shear Modulus Wt = π*(D-t) 2*t/2 = 3.1416*(323.85-11.81)2*11.81/2 = 1806306.01 mm3

 

We will take minimum of these two.

0.60*Wt*fy/γa1 = 295.58 KN-m

TRd 1 = [1.23*1806306.01*199948]/[1.1*62.7505*4.30431*106] = 1495.202 KN-m > 295.58 KN-m

TRd 2 = [0.6*1806306.01*199948]/[1.1*143.5956*106] = 1371.911 KN-m > 295.58 KN-m

So, TRd = 295.58 KN-m

 

  • Summary Table:

 

ItemSTAAD(X) ValueHand calculated value% Deviation
Critical clause5.3.25.3.2-
Critical ratio0.89620.8960.0223
Section classification
λ (Compression)_Flange27.41927.420.0036
λp (Compression)_Flange73.31473.3140.0000
λ (Compression)_Web27.41927.420.0036
λr (Compression)_Web73.31473.3140.0000
λ (Flexure)_Flange27.41927.420.0036
λp (Flexure)_Flange46.65546.6550.0000
λr (Flexure)_Flange206.613206.6130.0000
λ (Flexure)_Web27.41927.420.0036
λp (Flexure)_Web46.65546.6550.0000
λr (Flexure)_Web206.613206.6130.0000
Tension check
Yielding Tensile Pc [KN]3149.5543149.560.0002
Rupture Tensile Pc [KN]3421.7373421.7480.0003
Compression check
Compressive Pc (Major) [KN]2611.1352610.990.0056
Ae (Major) [mm2]11548.36411548.40.0003
Q110.0000
Reduced Slenderness Ratio (λ0)0.6690.6690.0000
Compressive Pc (Minor) [KN]2611.1352610.990.0056
Ae (Minor) [mm2]11548.36411548.40.0003
Reduced Slenderness Ratio (λ0)0.6690.6690.0000
Flexure check
Bending Capacity (Major) [KN-m]356.484356.4840.0000
Actual MZ [KN-m]000.0000
Bending Capacity (Minor) [KN-m]356.84356.4840.0998
Actual MY [KN-m]000.0000
Shear check
Shear Capacity (Major) [KN]944.866944.8690.0003
Aw (Major) [mm2]5774.1825774.1820.0000
Shear Capacity (Minor) [KN]944.866944.8690.0003
Aw (Minor) [mm2]5774.1825774.1820.0000
Major Local Buckling Capacity [KN-m]313.738313.7380.0000
Minor Local Buckling Capacity [KN-m]313.738313.7380.0000
Torsion check
Torsion Modulus Wt (mm3)1806443.1621806306.010.0076
Torsion Capacity (KN-m)295.6295.580.0068
Interaction check
Nsd (comp) (KN)234023400.0000
Nc,Rd (KN)2611.1352610.990.0056
Mx,Sd (KN-m)000.0000
Mx,Rd (KN-m)356.484356.4840.0000
My,Sd (KN-m)000.0000
My,Rd (KN-m)356.484356.4840.0000
Nsd (tens) (KN)000.0000
NRd (KN)3149.5543149.560.0002
Tags: STAAD(X)

Viewing all articles
Browse latest Browse all 8748

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>