Applies To | |||
Product(s): | RAM Structural System | ||
Version(s): | Any | ||
Environment: | N/A | ||
Area: | N/A | ||
Subarea: | N/A | ||
Original Author: | Bentley Technical Support Group | ||
How are torsional irregularities considered?
In general, the program automatically accounts for any eccentricity in the stiffness of the structure during the finite element analysis. For each structure, there is a center of rigidity (which you can report if you create a special center of rigidity load case). If the load is applied to the diaphragm eccentric to this center of rigidity location, then torsion in the structure develops.
Accidental torsion is also considered based on the percentage set under loads - masses (default is 5% of the diaphragm dimension). Currently, the application of accidental torsion is limited to rigid diaphragm analysis. A method for incorporating accidental torsion in semi-rigid diaphragm analysis is in development now.
What the program does NOT do, is amplify these torsion effects according to any specific code provisions (e.g. "Ax" from ASCE 7-02 12.8-14) . It is up to the user to account for additional torsion resulting from plan or vertical irregularities. Most people increase the mass eccentricity under loads - masses from 5% to some larger value to account for the extra torsion required by code, though user defined story forces with a modified location also work well.
Are the seismic results ultimate?
For program generated seismic load cases from any modern code (e.g. ASCE 7-05), the force magnitudes are at an ultimate level.
It's important to note, however, that the drift associated with any static seismic load is the elastic deformation (δxe from ASCE 7-02 Eq 12.8-15). The user should amplify the program drift results to determine design deflection for comparison against the allowable drift (δx from ASCE 7-05 Eq. 12.8-15)
Also note, the vertical component of the earthquake (Ev) is handled though the generation of load combinations by increasing or decreasing the Dead load factor, it is not part of the individual seismic load cases themselves. Furthermore, increases in the seismic force required by a lack of redundancy (Rho) are only accounted for in the load factors applied to the seismic loads in generated combinations.
What is the difference between seismic loads that use provisons for member forces and provisions for drift?
When creating a seismic load case suing the IBC/ASCE7 equivalent lateral force procedure, there is an option to use provision for member forces or provision for drift (see screenshot below).
The difference between these options is the upper limit of the calculated period used to calculate the seismic loads. When provisions for member forces are used, an upper limit of T = CuTa is used for the calculated period per ASCE 7-05 12.8.2. When provisions for drift are used, the upper limit on the period is not used per ASCE 7-05 12.8.6.2
Why do I get a warning about mass that's not associated with any diaphragm?
When you have line loads or any members with self weight masses considered (Under Ram Manager Criteria - Self-Weight) that occur outside of the boundary of the diaphragm slab edge you will get the following type of warning:
Some mass has been detected on one or more stories that is not associated with any diaphragms.
It will be ignored in Analysis unless it is combined with one or more diaphragms.
See the Loads - Masses command.
Under Loads - Masses you can evaluate the total diaphragm masses and you can combine these values with some diaphragm, override with User Specified Values or choose to ignore them by doing nothing.
See Also
Structural Product TechNotes And FAQs
External Links
Bentley Technical Support KnowledgeBase
Comments or Corrections?
Bentley's Technical Support Group requests that you please confine any comments you have on this Wiki entry to this "Comments or Corrections?" section. THANK YOU!